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ABSOUA.A

In this report, we invectigate the application of Miller's algorithm

for backward recursion to the difference equation

L C,(n)y(n+) =0, Co 1, C0 (n) 0 0 > 1 ,
"=0

n 0,1,2,..., where Cv(n) has a representation ac an asymptotic series

Kv/u -1/w
C'(n) ~ n c0, C,, ..+ c n,

and X. is an integer, w is an integer k 1 , co,, -1 0 unless

C_(n) -- 0 . Also we discuss the convergence of several methods wbich are

related to Miller's algoiithm and which can be used when Miller's algorithm

does not converge.

A number of exompTLs are included.
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I.

SUMMARY AND INTIRODUCTION

Computation by the use of difference equations in the backward direction

was introduced by J.C.P. Miller (1952). In this reference, he applied the

method, now sometimes called Miller's algoritlh, to the calculation of Bessel

functions, and it proceeds essentially as follcws.*

Consider the difference equation

y(n) - 2(n+l) y(n4l) - y(n4-2) = 0 , x > 0 , n z 0 , (1.1)
x

which is satisfied by the modified Bessel functions In(x) and (-)nKn(x) **

Let m be an integer > 0 . Put

Am+ 1(m) = 0, Am(m) = 1 (1.2)

and calculate A21(m) for 0 < n -, mr-i from (1.1), i.e.,

An(m) -n+- ) An+l(ln) + A.+2(m) , 0 5 n 5 m-I (1.3)

Now the serics

"k (i, k=O,I ý7-O- ... (- i)kI.k(") , k =•kO •4
k=0 2,~

* Miller haus uLatcd that he first used tLhe i :ý, 1in ald in the ccnputa-

tion o,' Airy InttL:rals, ;,.e Miller (1.a.13).
** All sj...'cial func t ons in thl:; 4,ork t:-c deoCined ar n .1 F'dcj1 t iLl (1953).



is known (Erd&lyi et al (1953), v. II, p. 7).

Let

•2(m)-- m/ _ (-kc•(m) , (5.)
k=O

where [m/2] means the largest integer not greatL' than m/2 . Then, by

using the known asymptotic properties of I. , Kn for large n , one can show

that

lim An(mL)Y(m) In(x) , n , x > 0 (3.6)

In fact, the asy.qptotic estimates

____ ~ -)] ()nIX (-2/x)n r(n)I[1l+O(n-')1 17n C_

follow from the ascending series representations of In and Kn , and, since

An(m) satisfies (1.1), it can be represented as a linear combination of the

(linearly independent) solutions (1.7), see the Appendix. This racans that

An(m) = l(m)In(x) + ý2 (i"l)(-)nKn(x) (.8i)

kProm (1. 2) and

we conclude that
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Thus

An(Ir) rm(2/x)mln(x) L1 + O(")- , m-., }l.n) ,

O(m) m!(2/x)m I. + O(M-1) ,

so (1.6) follows. $

The above analysis shows clearly why the process converges, and also why

it converges to In and not to (-)nKn: In is very small compared to K,

as n-. . Th-s characteristic of Miller's algorithA., namely, that the solu-

tion of the difference equation to which the process converges, 1X it converges,

must, in a certain sense be the smallest soluticn, remains true when thc algo-

rithm is applied to general homogreneous difference equations, see our TMeorem

4.3.

A remarkable feature of the Miller algorithm is [hat no tabular values of

In are needed in the computations, only a noi-,:alization relations}ip", such ac

(1.4). Tabular values would be required, of course, iC (1.1) were used in the

forward direction, and woreover, i,,hcn (1.1) Is used In the forward direction

to compute 1j, starting with initial values of 10 and I tho-e small errors

inevitably lntro-hced In the ccu)'c *L the 1,aptatIon jro-l r ypitly with n

3



Such a phenomenon is called inst.bility.*

The method proposed by Mille'r creaC,•d enormous interest, and a number of

pr.pers subsequently appeared in which the writers either further treated the

application of the method to Bessel functions, or else showed that the method

could be used to compute other special functions. Stegun and Abramowitz

(1957), Randels and Reeves (1958), Goldstein and Thaler (1959), Corbat' and

Uretsky (1959), and MIakinouchi (1965a,b) all treated the computation of Bessel

functions. Rotenberg (19GO) showed how the algorithm could be used to compute

toroidal harmonics (i.e., Legendre functions) and Miller himself applied the

method to parabolic cylinder functions (1964).

Gautschi (1961a) discussed the computation of repeated integrals of the

error function

2
y(n) = in e-fcx= (2/IWnf- n (t-x) ne-t dt , n • 0 , (1.12)

x

which satisfy

*.The computation of (-)nKn by using (1.1) in the forward direction with

initial values of K0 and K1  is stable, ie., random errors intro-
duced during the computations do not grow with n . in general, a differ-
ence equation can be used efficiently in the forward direction only to
compute the "largest" solution of the equation, However, the analysis of
the forward procedure is rather less of a problem than the analysis of

IMiller's algorithm, see Gautuchi (ca 1962), and will occupy none of our
i attention here.

! 4



y(n) - 2xy(n+l) - 2(n+2)y(n+2) = 0 , (1.l3

and in a later paper (1961b) discussed the computation by backfard recuruion

of a number of other functions defined by definite integrals.

The Miller algorithm can be applied to problems other than the computa-

tion of the special functions. Recently, it h.cs been employed in such diverse

problems as the calculation of successive derivi.tives of [f(z)Iz] , where f

is an arbitrary analytic function (Gautschi (1966)) &nd the computation of

coefficients for the Chebyshev polynomial expansions of fu..-tions which satisfy

differential equations with polynomial coefficients (Clenshaw (1957),(1962)).

Of course, any numerical technique of such general applicability demands

a thorough theoretical investigation. Gautschi (1961b), who analyzed its con-

vergence when applied to an arbitrary second order difference Lcuation, seems

to have been the first writer to discuss the Miller algorithm from a general

point of view. lIe continues this analysis in two unpublished works (ca 1962,

1963) using as his main tools the theory of continued fractions and the classi-

cal asymptotic theory of linear difference equatLons (e.g., the theorsms of

Poincare, Perron, and Kreuser), and he applies his findings to -the computation

of Bessel functions, Legendre functions, the incomplete Beta function and the

numerical computation of Fourier coefficients.

By now a great deal is lnoim about the application of Miller's algorithm

to second order diff,*.-ence equations. Conditions on the solutions of the equa-

tion which will guarantee the convergence of the algorithm have bcen given by

5

- -•



17/

Gautschi (1961b) and by Olver (1964). Methods of increasing the efficiency

of the algorithm by using the adjoint equation to generate auxiliary sequences

have been given by Shintuni (1965). (Our Theorem 2.7 is a generalization of

I one of this author's results.)

On the other hand, little is known concerning application of the algorithm

to difference equations of arbitrary order. Gautschi (ca 1962) has touched

briefly on the use of difference equations of order a > 2 , but, unfortunately,

the classical asymptotic theory on which his analysis is based does not give

very realistic conditions for convergence of the algorithm. More specifically,

Gautschi found it necessary to assune the existence of a fundamental set for

the equation (see the Appendix) whose members exhibited radically dissimilar

behaviour as n--- , namely if {yh(n)} were the set in question, and

Yh(n+l)fyh(n) thn vh, th 0 > va-1 > ... > v1  (1.14)

n-P. co 1 h 5 a,

then it could be shown that Miller's algorithm converged (to yl(n)) , provided,

of course, that a suitable normalization relationship was known. Needless to

say, this condition is excessively stringent, at least for a very wide class

of difference equations (ef our Theorem 4.2).

The purpose of this work is to e:,amine the application of Miller's algo-

rithm, as well as several relzthed algorithms, to homoLc -ous linear difference

equations of arbitrary order with coefficients of a fairly general type.

{6



(The related al.gorithms are modifications of Miller's a1lgorithm which can be

usd when the equation has no smallest solution.)

First, in Chapter II, we formulate the algorithms as they are applied to

difference equations with arbitrary coefficients, and investigate their con-

vergence properties. Conditions for convergence take the form of rather ýio

unwieldy restrictions on the growth of solutions of the equation and determi-

nants involving them. To obtain more practical conditions, it is necessary

to restrict somehow the form of the coefficients in the equation. This is

done in the chapters following by requiring that the coefficients poasess

certain asymptotic representations as n-* . We are then able to use as our

principal investiga.ional tool the analytic theory of singular difference

equations which was developed by Birkhoff and Trjitzinsky. Virtus'lly all

difference equations encountered in p-2actical applications are of the specified

form., including all equations with coefficients rational in n . In particular,

the computational procedures discussed by the preceding authors are included

in our analysis.

Chapter III is devoted exclusively to an asymptotic analysis of the solu-

tions of this diffeecrnce equation, starting with the above-mentioned theory of

Birlkoff and Trjitzinsky. We then prove two new theorems concer-ning the repre-

sentation of those solutions whose growth can be described with only algebraic

and logarithmic terms.

In Chapter IV, 7 ,,c app]y the ai-ptotic results of the previous chapter -

to the problem of determnining more tractable conditions for Lhe convergence

7
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of the algorithms given in Chapter II. One result is that, for the type of

difference equation considered, at least one of the algorithms will converge

to a solution of that equation, provided that one can find a fundamental set

for the adjoint equation in which no more than two solutions have the same

rate of growth (in absolute value) as n-.c . A consequence of this theorem

is that, for a second order difference equation of the specified type,

Miller's algorithm, or a suitable modification of it, will always converge.

Chapter IV contains a number of examples, among which are the computation

of the integral

y(n) = exp ta P(t tndt n >- 0( )

0

a an integer >- 2 , P(t) a polynomial of degree (0-1) , and the computation

of a class of hypergeometric functions.

In the Appendix of this work are contained definitions, notation, and

those properties of difference equations which are frequently used in the pre-

ceding chapters. (References to material in the Appendix are preceded by an

A, as A.2, A-VI, etc.)

8 -
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II."

In this chapter, we will discuss computation by backward recirsion based

on the linear homogeneous difference equation of order a 2 2

•-c,(n)y(n+v) 0 Co I co= U (n) 0, .)

where n is an Integer 0.

The first algorithm proceLdas as follows. Let m be an integer • 0

Put

AM--(M) AMV2(m) m+:1( ) 0 Am(m) 1(2.2)
Am,+.(m) = Am+a..2(m = ... = A ~m) = 0 , ~m)= 1, (2)i

and calculate An(m) for 0 - n m n.-i by recursion from

7 Cv(n)An+v(m) 0 . (2.3)
V=0

Suppose we are given the convergent series (callea a normalization rela-

tionship)

1 7 Lkyl(k) (2.4)
k=0

where yl(n) is a solution of (2.1).



Define

fl(m)= LAkm (2.5)

k=O

and

r.(m) = An(m)/fl(n) . (2.6)

Definition 2.1

If

lim rn(m) = yl(n) , n • 0 , (2.7)

then we say the computation of yl(n) by backaard recursion based on (2.1)

and (2.4) converges.

Let us analyze the above algorithm. First, byA-IIVwe note that (2.1)

possesses a fundamental set, { Yh(n)} , and since An(m) satisfie5 the equa-

tion, we can write

a
An(m) W hm)Yh(n) ,(2.8)

h=1

where Ch is independent of n . By setting n = m , m + 1 , ... , m + a - 1

in (2.8) it is found that

10



Vh(m) -h(m/D(m) l (2.9)

where Th , D are defined in A-V, A-VI. D is not zero because of properties t

A) A-V, and the fact that C,(n) # 0

Thus

STh(m)Yh(n)

rn(m) = l (2.10)a m

h=l k=O

and this formulation leads to

Theorem 2.1

Let Tl(i) / 0 for m sufficiently large.

Define

Th(m) m
RhRh(m) --- --- , S- S(m) - • Lkyh1(k) , 1 h <. . (2.11)

k--O

Now suppose

1Lirn Ell 1 im RhSh = 0 ,2 h a (2.12)

M44.

Then the computation of yl(n) by baclaiard recursion based on (2.1) and (2.4)

con,;rerges.

11



if Yl(O) is known from some 3ource. the algorithm and the conditions for

its validity simplify considerably. Thia means we can take Lk 0 for

k> 0 ,and Lo VyI(O) . We have

Corolla.ry" 2.1

Let y1 (O) be known and nor zero and let

lim h = 0, •2 s h . (2.13)
Mi-P

Then

1im ýn(m) KI(n) (.4= ,rn 0 (2.14)

R-4- 0o(m) Yl(°(O)

In the application of Theorem 2.1 one will find it more convenient, for

large m , to calculate 0 using the following result, rather than (2.5).

Theorem 2.2

r0 satisfies

Z CC-V(mv+•)O(m+V) =' ,3+ m k 0 , (2.15)
V:=0

with the initial values (as obtained from (2.2) - (2.5))

i• n~(0) -Lo , n~l) -el(elio + L1 ( G

(2. 16)
0(2) L6 [c1 (o~c 1(u) - c2(o)" - LlCl(l) + I.•

l1 C2 0



Proof:

By (2.8) and A-VI ve have.. for k m 0,

Ca%.v(mft)Ak(miv) =0 ,(2.17)

so

MOa
SCo..v(u+V)JkAk(m+v) =0. 228

k=-O %0=0

Nov Ak(m+V) =0 for m+v+l . k s m+v+a-1 -so if emp~ty s~um are inter-

preted as zero.. we can write (2.18) ýz

,VOOk--Mlva J

1*N7A3 +(m)Ca(m) + Ca %(mi+v)fl(mv) (2.19)
'J=0

Lm4-0+ .aV(uidVýf(m+v) =0*

For a -2 ,thic ircuult in eiven by Shintant (19W6).

How 3upp~ose that u~ oZ the41' luchia'e stiivillaily as mp.. but that

the ratto o&' Wn one ot L.heoe to each or" theo a-u other %his approBachea

15



zero as m-*a . A Generalization of a method due to Luke (unpublishea),which

was In turn suggested by Clenshaw (19G4) for a three-tem~ recursion relation,

can often be used to obtain any one of the first u solutions corresponding

to the u Rh's . Clenshaw (1962) originally used this method, for a=2 , to

compute coefficients for the Chebyshev polynomial expansions of certain mathe-

matical functions.

Vithout loss of Generality• we may assume yl(n) is the solution of

(2.1) that we wish to compute. The algorithm is then described by the follow-

ing theorem.

Theorem 2.5

Let the constants Lkj be given for 0 g k <- , 1 ! u , and define

Sh=j -E Shpj(a) = L ],ayh(k) , 2 i h !C , 1 l ' u , 2 s u ia
k=O (2.20)

Let % be bounded and bounded away from zero as m*m for 2 ! h ' u,

Vhile Bhe 0  an --*. for u+l 1 h !a *. Let rn(m) be a3 in (2.6) vith

Lk * Lk, and lot n(m) , Ti(m) be non-acro for a sufficiently large. Let

also

1. (2.21)

14
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Then for m1 sufficiently largc, we can determine mh for 2 5 h < u ,

m<n2 <im3 < .,. <m. , so that the system of equations

"v L,jrk(mv) 1 2,3,..,u

v=l k=O
=1,(,2.2) P:

•v~

has a uniqe solution { }(depending, of course, on the mh ).

U
Let IRIi(mj)L be bounded away from zero as mr-• . Then

uI
U

i= F- nyj(ly) = yl(n) , n : 0 . (2.24)

Proof:

Note that since Tl(mv), G(mv) arm not zero for ml sufficiently large,

the system (2.23) is well-defined.

Euation (2.23) is

"Z ,* Z" - Tth(Mv1S,1 (' • :•.iuvuhl dtri antJ.U (2.2-5)

ffy WV41(mVYk)inY)

The deteruaimAnt or (2.25) is

15



S U•

I $

jlth(IRJ)j Ijh 1 (i + o(l) 1 (2.26)

The v% can be chosen so that (2.26) is not zero, else the hare
S I'

lineurI7 depeadet, by A-I, A-If. Since h' J 0 , e conclude that

(2.23) tniquely determibies n. for u1 sufficiently large. Furthermore,

vhen (2.25) is solved for , one finds that this quantity (and hence it

itself) is baonded as w4-

We write

• v=1 Irjn~~awX Rh-(rn) c, c(mV)2.

liaca =0,-u+lI s a. (2.29)

Also, from '(2.25) and the boundedness of the Th we have

U

h=1

1.6



and since Al, j = I , we conclude from this system of equations that

*lm ca 0 (2.321

which, when used with (2.29) in (2.27), gives the theorem.

The application of the above theorem requires that we know u normaliza-

tion relations for the desired solution, yl(n) . If, instead, we know u

values of Yl , then the following result can be used.

Theorem 2.4

Let

lim Rh= 0 ,u + h , (2.32)

while Rh is bounded and bounded away from zero as m->- for 1 g h ! u .

Then we can determine kh , 1 r h : u ,0 k < k2 < k3 < ... < ku p

so that

lYh(kj)1. 0 (2.33)

and for ml sufficiently large, mh can be determined, ml < m2 < ... <mu m

so that the system of equations

17
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iu

j (

Z-l Ak (mv/Akl(mV,) = yl(k3 ) , 1 3: J•u ' (2.34)

has a unique solution, rh , 1 - h ! u . Furthermore, suppose klh(iaj) Iu is

bounded away from zero as mi-*. . Then

iu

lrn F TtvA(rnvY)/l~k(mv) =yl(n) n ýt 0 *(2.35)

ml-* v=l

Proof:

As for Theorem 2.3.

Unless additional assumptions are made about the nature of the coeffi-

cients CV(n) in the difference equation, it may not be possible to find a

ftadamental set so that Tl(m) is non-zero for m large. However, in most

applied problems, in particular in all those examples of computation by back-

ward recursion which we discussed in the introduction of this work, the dif-

ference equation in question possessed coefficients which were rational func-

tions of n . If this is the case, as we shall see, a fundamental set can

always be chosen so that Tl(m) is non-zero for m sufficLntly large, and

the Miller algoritha at least has a chance of converging. Even if it is only

required that Cv(n) possess an asymptotic series in powers of n , w an

- I i - *



integer . 1 , the Pame is true.

It is thus natural That we turn our attention to this kind of equation.

I1II
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III •

In this and the following chapters of this work, the standard form for

the difference ecyuation will be

a
Z C,(n).y(n+v) = 0, C0 = 1 , Cc 9 0 a; a 2 n n 0 (3.1)
'V=O

(n) "n) + ,,n.n' + C n -2/w + (3.2)

where X is an integer, w is an integer t 1 , and co,v 0 unless

CV •0 . We also assume that the coefficients are written with the smallest

possible value of w . Note that the equation adjoint to (3.1) also has co-

efficients of the same general form as (3.2). By (A.12), equation (3.1) has

a unique solution y(n) satisfying

y(no+)-oj , aj I j :r- no o 0 (3.3)

Thus, for n t, no 0 , (3.1) has a fundamental set.

We shall see that there exists a certain fundamental set for (3.1)
S whose members share an unusual property: each has an asymptotic expansion,

valid as n-->- , which consists of an exponential leading term multiplied by

a descending series of the kind (3.2) (where, however, ,u may be repla-ed by.

an integral multiple of w , see (3.4)-(3.7) below). Essentially, these

series are the same as the so-called subnormal series encountered in the study

of ordinary linear differential equationo with polynomial coefficients near

20I



singular points, see Ince (1956, Ch. 17). This is another example of the

close analogy between differential equations and difference ecluations.

For our purposes, the existence of solutions of the difference equation

(3.1) which have such asymptotic representations is quite important, since the

very form of the asymptotic series enables us to determine much more practical

conditions for the convergence of the class of algorithms discussed in

Chapter II.

However, we will have to examine the properties, algebraic and analytic,

of these solutions in great detail before we can attack the convergence prob-

lem directly, and the present chapter is devoted entirely to this study.

We begin with several definitions.

( Consider the series

i~ eQPns(p;n) ,(3.,C i

p

Q(n) Q(p;n) = In in n+ n, (3.5)

s(n)-- s(p;n) n' > (In n) n r qj(p;n) (3.6)
J=O /

qj(p;n) nsqj(n) /Pbs,jn ,

where p , rj , Iop are integers, p • 1 , , 0 b,,j are complex param-

eters, boj A 0 , unless bsj 0 for all , 5 s < * , ro 0 ,

-TT :5 Im 1l < r .
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Definition 3.1

The series (3.4), called a formal series (F.S.), will be called a formal

series solution (F.8.S.) of (3.1) if, when it is substituted in (3.1), the

equation is divided by eQ(n) and the obvious algebraic manipulations (see

below) are performed, then the coefficient of each quantity

n(nn , 0 oj l t r, r±s 0 0 -2) ... (3.8)

is equal to zerco.

A concept of formal equality between two F.S. can be defined by requiring

that, when the series are written with the same value of p (as is always pos-

sible), then the parameters t , 0 , bsj , rj , pj for both series are the

same. Formal equality of formal solutions also ar'ses in the theory of or-

dinary differential equations (see Coddington and Lvvinson (1955), p. 114 ff).

The construction of F.S.S. may be carried out by using the identities

ep(n+v) 6 = epn 6 [1 + aJ-l ak(8 Ij J% (3.9)
kkJ'j

(n+v) 0  =no e I + -- + ... (3.10)
2n

(n : n + -V + . .(3.11)
S~n

22



Kf

r V2 +ln(n+vJJ in n + (3.12)n 2n2

although, in practice, it is difficult to obtain by hand other than the first

few terms this way, see Birkhoff (1930).*

Very often, we shall let "Q(n)," "s(n)," be generic symbols for the

series (3.5), (3.6). The series so denoted do riot necessarily have the same

values of the parameters 8 , t bs. j when the series occur in dif-

ferent equations. If, however, it is necessary to differentiate between two

such series, we shall do so with subscripts, e.g., Ql(n) , sl(n) , Q2 (n) ,

s2 (n), etc. With this convention understood, we see that F.S. possess the

following properties:

eQ envQ~

(n+v)sl(n+v) = e(n)s2(n) , = 1,2,..., (3.13)

Q (p;n) Q2 (p';n) Q3 (p*;n)
e sl(p;n).-e sp';n) = e s3 (p*;n) , (3.14)

where p* is the least common multiple of p and p'

The sum of two F.S. is not in general a F.S., but if q(n) , 0 are the

same for both series, we have

* J.C.P. Miller hao brought to our attention the fact that the determination
of these series can be done very efficiently by computers.
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eQ(n)npql(p;n) + eQ(n) neq2 (p';n) = eq()noq3 (p*;n) . (3.15)

Definition 3.2 e(

f (n)• e4(n)s (n) n---,(.6

means that, for every k a I , we can determine functions Ak,j (n)

0 ! j : t , such that

e-Qnn'Sf(n) n8 f (in n)jt(j/P k-1 bjn.S/P
J=O s=O

+ ~ r-/ /• )ntjPA

+ nkip Z (in n)n Ak,j(n) (3.17)

J=O

and lAkijl is bounded as n->c , for all kj

See Birkhoff and Trjitzinsky (1932, p. 62). If t 0 • this dcfinition

coincides with (A.7)-(A.8). Also (3.17) is unique, since it is readily veri-

fied that zero has no non-trivial representation of the form (3.1.).

Definition 3.3

Let

eQ +�sh(n+j ) k
k e )s(nj) (3.1

24-



By (3.12)-(3.14); Wk is a F.S., and

Q~n~l ((.lo
Wk= exp{ Q i(n) i(n) = s(n)

We say the k F.S. e sQh(n)sh(n)J are formally lineurly independ nt if

s(n) # 0 . Otherwise, they are formally lincarly depen4ent.

Definition 3.4

There exist exact1y r F.S.S. of a certain type (e.g., with Q(n) = 0)

for the equation (3.1) means r F.S. of that type can be constructed which are
t

formally linearly independent, and any r+1 such F.S.S. are formally liaearly

dependert.

Now we may formulate two very important questions about the difference

equation (3.1). Does the equation always possess exactly u F.S.S. of the

general type (3.4)? If so, what relationship do these F.S.S. bear to the

fundamental sets for the equation?

These questions were answered partially by a number of mathewaticians,

see Adams (1928) and the references given theze. However, only with the ad-

vent of two papers, the first by Birkhoff (1930) and the second by Birkhoff

and TrJitzinsky (1932) was the theory completed. The results of these two

writers yield
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Theorem 3.1 (RIrkhoff-TrJitzinsky)

There exist exactly a F.S.S. of equation (3.1) of type (3.4), where

p = , , for some integer ZOZ I , and each F.S.S. represents asymptotically

so=e solution of the equation in the sense of (3.16). The a solutions so

represented constitute a fundamental se * for the equation.

Definition 3.5

The particular fundamental sets mentioned in Theorem 3.1 will be called

Birkhoff sets. Each member of a Birkhoff set is called a Birkhoff solution.

Novi let {yh(n)l, 1 5 h - a , be a Birkhoff set for (3.1), i.e., let

%h( p n)

yhs(n),- e Sh(P;r) , n-- , 1 a , (3.20)

which is permissible, since we can write all the F.S.S. of Theorem 3.1 with a

common value of p.

Then none of the determinants

Wm w•,= n~ )1, 1 !5 m,. m2, < .'•< mu f. a,(.2.
IA 1

can be zero for n sufficiently large, and in particular, Yh(n) 0 for n

sufficiently laxaee, I f h f a • In tact, j.ince the F.S.S. are formally

linearly independent,



=ceQ (nn(1 n)rL. ()],n sC '0, (2)

so Ultimately W~ is monotonic in n . as is Iyh(n)I

We now examine more closely the structure of the F.S.S. (3.4).

Theorem 3.2

Let (3.L)-(3.2) hold, and let

cpk(n) =q eQPnmo (ln n)q~ ktPt+-k)JL.!,

(3.23)
O~k~t ,

rj an integer.

Then if (t(n) is a F.S.S. of (3.1), so are .Oh(n) , 0 < h • t-1

Proof:

k(n) = e (n) , y(n) en j(n) . (3.24)

Then

r) •[ + n/ * ... ; (3.25)

27
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I Is of the form m/p , m an integer, so the difference equation for

y(n) will be cl the same kind as (3.1), except with w replaced by p • Let

I ,(n) be the coefficient of the transformed equation and

k )rk-j'P~t•k•
= n) qtn..kk(p;n ' , (3.26)

L=)

•t(n) being, by hypothesis, a F.S.S. of that equation. Substituting (3.26)

with k - t into (3.1) and setting to zero the coefficient of (In n)u gives

I t-u-1

>_ C-,(n)(n v)0  L(P;n+v)(u+l)'j(n-tv) t-u n i. 0I=vC 1:o (3.27)

Let utt-Ji0

• - ,,(.)(..,,,) 'jr /Pz

Ln=o (3.28)

0 j f t .

Nov writing

[in(iPv/n)J = [i.n(ni-v) 1 n nJ ,(3.29)

and expanding by the binomial theorem, we get
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a J-u p r

> Cv~n(n~v) (in n)U'(-)U/u! qt,~~~~)nv

(3.50)

X (t+ij-)•+[.,,n(n+v,] /v 0' : 0 S j S t

From (3.26) we have

-J-ir

p v=0 u r
and so

V=O--

Non suppose io(n),pj(n),...,JkCn) are F.S.S. of the transformed equa-

tion, and let J k+ in (3.32). We have

C (n,,€" +j.€"+v) 0 •.3

But for j = 0 , (3.28) gives

>~ Cv (n)(+ q.(n+v)%tng(n+v) 0 (3.54)
i ~V=O V=O '.,

so the induction is complete, and the %h(n) , 0 < h s t , satisfy (a.1).
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Birkhoff (J30) has noted that, once a maximum value of t is found so

that e s(n)0o(n) is a F.S.S. of (3.1), then there are t other F.S.S.,

eo n'sh(n) , 1 5 h S t , and in sh(n), In n occurs to the t-h power.

However, the explicit form of the series, i.e., (3.23), seems to be new.

We will need information about the number and form of those F.S.S. of

(3.1) whose exponential leading terms are constant. The necessary results

are contained in

Theorem 3.3

Let (3.1)-(3.2) hold, and define

a

Pk -k(n) %k , k = 1),2...,

0 (3.35)

P0, P.(n) C
i V=O

Then we can write

ak/LW nk+ -if + n-21 .+ n.] -> (3.36)

Pk ~ laosk + al,k +.a2,kn1

Ok an integer, ao,k $ 0 unless Pk M 0 , in which case we interpret

k

30
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TU max (~/-),(3.37)

and let

ko< k <k2 < ... < k (3.38)

be those values of k for which

tk/tu- k-, 0.(3.k9)

Then k 5o a and there exist exactly ki F.S.S. of (3.1) of the form

s(p;n) , and p = m . Each represents asymptotically a solution of (3.1) as

n-->a , the k solutions so represented being linearly independent.

Furthermore, o = eh is one of the kt values satisfying

k
G C-) (-O)kjao.,k/ka j 0 (.0

and if no two of the Oh's differ by integral D.iltiples of 1w then the

F.S.S. take the form

s(n) = nb[bO + bln ÷ ... ] , 0 0 • (3.41)

Logarithmic solutions can occur only if some of the rocts of Go(O) differ

by integral multiples of 1/w•

31
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Preview of Proof:

First, we show that p w in any purely algebraic-logarithmic F.S.S.

of tVe difference equation (3.1).

Second, by considering (3.35) as a system of equations in the "unknowns"

C,(n) , 0 1 v s a , we show there exiats a finite T satisfying (3.37) and

that k •.•a

Third, the existence of F.S.S. is shown by actual construction, using

Frobenius' method, first for the case where none of the roots of G,(O)

differ by integral multiples of 1/w , and next for the case where none of

the roots of Go(O) are equal, but where there exists a subset of roots

differing frum each other by integral multiplies of 1/w . It is then shown

that in these two cases, any purely algebraic-logarithmic F.S.S. of (3.1) can

be expressed as a linear combination of the solutions already constructed,

i.e., for these two cases, there are exactly k* such F.B.S.

lastly, we indicate briefly how similar results are obtained when some

of the roots of Go(O) are equal, and the solutions for this case are

displayed.

Proof:

Let

k r rk A/p
k(n) (in n). n - q(P;n) (3.42)

A=O
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be a F.S.S. of (3.1). By the Euclidean algorithm, we have

rj= mj + vj ; 0 - J ! k ) 0 !5 vj 1-, (3.43)

where rj , mj are integers, and V is as in Theorem 3.1.

We can also effect the decomposition j
"k-"-P 3/p-p, 6/n q,(p;n) = n qj,,(w;n) (3.44)

J=O

or

1' k(n) s j s,k(w;n) (3.45)
J=O

k )•r* /W
s j,k(w;n) = ne* (In n n k-rJ qj,(w;n) (5.46)

where

k-J mk- p, + J,k ( o ) ,

"0* 9P•kiPf(3.47)

kk

and s is a series of the type (3.6) with P = w and 0 an integral
J~k

multiple of 1/w . Note that some of these series can be zero.
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2hT~iw
The difference equation is unchanged by replacing n by ne , h

an integer, so each of the functions [kLnehi is also a F.S.S. of (3.1).

An application of Theorem 3.2, or a result of Birkhoff (1930, section 2),

shows, furthermore, that each of the functions

'h,k(n) e - eJi/ ; sj,k(w.n)
J3O

is a F.S.S. of (3.1). We can determine unique constants Ah,j , 0•h •v-l

where v is the number of non-zero sj,k , so that

V-1

Ah, Jh,k(n) = sj,k((u;n) , 0 ! J 5 V-l (3.49)
hu0

since the determinant of the system of equations (3.48) is a Vandermonde

determinant which is non-zero.

But (3.49), when substituted in (3.45), shows that every purely algebraic

logarit'hmic F.S.S. of (3.1) can be expressed as a finite linear combintation

of similar solutions, each of which can be written with p w , and the

first step of the proof is completed.

Not all the P 's , 0 5 k s ,can be zero unless C0 = C1

cc, 0 , since the determinant

a
= l!2!3...a! (3.50)
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does not vanish. IHence there exists at least one finite ck 0 0 k 5 a ,

and therefore a finite T satisfying (3.37). Also, from (3.35), we have

for k 1,2,...,

• 0 (3.51)

!p

Pa
' P~ki a+k ... aq+k •

£k Pl +2,kp2 + 'akL'a (3.52)

and

a w r max vj/ A k =1,2)..., (3.53)

or

Go~k/w -(a~k)] < max j/W - J k = ,,.,(3.54)

and k ga.

Now assume

y(n) n bn , b0 0 (3.55)
s=O
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y(n+v) no _ bsn-s' s (3.56)II(/-o5- v /k!n (.6
s=O k=O

Substituting (3.56) in (3.1) gives

n L-- bn-s/ 5 (s/w--)k(-)k k/k!n k 0 (3.57)
=s0 k=O

We can write

(s/w-e)k(-)kPk/knk = n' T Gm(-s/w)n-m/ (3.58)

k=O mO0

and so

a O+T n m/(

L CY(n+v) n > nM/U Z- bsGm_s(O-s/w) = 0 (3.59)
V=0 ,:O s=0

We must have

m
bsGms(O-s/u) 0 , m 0,1,2,... (3.60)

If none of the roots, Oh ,of GO(0) differ by integral multiples of 1/) ,

then the construction of the k solutions can proceed directly from (3.60).

If some of the roots of Go(e) do differ by integral multiples of 1/w , then

the construction of solutions is done by the method of Frobenius, as folows.
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Coilsider the difference equation

a

2- cq4(n+v) en n Go(O) (3.Gl)
V=O

where

(n n' /" ;' c 0 (362
S=O

Then the ýh's satisfy the recurrence relation

L s _(0) -s/w) 0 m 1 ... , 2( = - ( (3.63)
S=O

By putting 0 , 1 • h ki , in (3.62)-(3.63) we obtain the previous

kj solutions, provided non,! of the shS differ by intcgral multiples of

l/w • We can solve the system (3.63) to obtain

53(0) E ,s(O) TT -j• G 1s0i S 1, (3.64) "

j =1.

where E. is a polynomial in 6 • Now suppose that

02 0 1 + Lj/w ,0 01 + L.,,, ... ,0 1  +Iw, ++1 • k, , (3.6s)

where Lh is a positive inte;er and
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0 < Li < 12 < ... < LX = O , (3.66)

butthat 6h-ai is not an integral multiple of i/w for -A+2 : h k.

Define

LX
oc(G) = I ( e) FT G(G-J/w) , s 2 0 (3.67)J=l

or

cs(O) =E s (G) T• o(B-J/w) . 0 sB L-1 . (3.68)

J=s+1

Then Pr(e) is well defined when 8 =h , 1 h s X+l . We can write

C(•¢n+v) + G-J/w)3.69)

v=O j=0

x+l

= cnO+TI(O) ]T (I-e l 1  (3.70)
J=l

where

sO
'•'n)= n • ,'(O)n-/ , (3.71)

S=O

Ix(0) a polynomial in 0
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We now differentiate (3.69) h times with respect to G , set 0 = 0 h+1,1

and use the fact that

r s() o0 0 ! 5 0 5 Lh-Lr- (3.72)
Ber I 0h+l

to obtain the X+l F.S.S.

e h L W
iph+l(n) = n •- ~ (-h),(-) (in n) g (n (3.73)(P+I( 9 Ihnn

1=0

hns/(Q b
g,hn bs,,nb , , h = ý s+Lh-LA(eis=O Be• eh+1

0o h r . (3.74)

Since

bosh,h = 08 0 (-75

b h O=0h+1

the above solutions are clearly formally linearly independent, by A-VII.

Let (3.42), with p = w , be a F.S.S. of (3.1)- and let GO(O) contain

A
no multiple roots. We wish to show cpk(n) can be expressed as a linear com-

bination of the solutions already constructed. Denote by d,, the coeffi-

cient of n s/w in qy(n) . We can write
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k •t(,)r J
A ()k) =q,,(w n k, 4- (3.76)

and substitutine this in (3.1), we find th.t 8 and d. must be such that

' (+.t ./ . oskL ._ 0A2..~
A=O MOS=O

o<sv, k . (3.77)

For Y , the above equation demands that Go(a) 0 . Thus as:cme

=e 1 , since the cýsea O- h 2 S h SX.+1 , can be treated similarly,

as can th- cases where 0 ,lorgs to any other grcp of roots of Go(e )

uhich differ by integral miltiples of 1/w . If 9 = . where 0 differs

from no ýther root of Go(0) by an integral v/ltiple of w]/ , then the

analysis is Gudte simple: we must have k = 0 in (3.76), and the result is

one of the purely algebraic F.S.S. (3.41).

"Wke can show by induction, using foirmula (3.77), that the rh's cannot

ue arbitrary, bnt nist satisfy the relations

0 r =Lj<r L,.<rý = L, < .. < =k LiI LX (3.78)

42o "

and k X J • , i< jý < .'" (To avoid double subscripts on the rh's , it

is asLued that any rh ':hich corresponds to a qk-h(n) 0 is deleted from

the c::in (3.78).)
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Nou let p be the highest power ol In n which occars in any of the

functions cph(n) , 1 s h s x+1 . Note tiat the last term in .h 1 (r.) is

nHcwe h(n), hp()! 0 ( , (3.79)

Hence we may select a %h(n) which contains the term n gy, y(n)

and subtracting a constant multiple of this function from qk(n) leaves a

series of the same kind whose lead term is either zero or U I
rk< rk . BNt, by (3.78), rk must be one of the Lj . Hence we can find

another qh(n) with lead term n and subtract a constant mualtiple of

this series from the above serie-r so that the initial power of n in the

lead term is again diminished, to nr, rI' < r*. This may be con-

tinmed until yk(n) is reduced to

Vk(n) = f('0 + gk(n) , (3.80)

where gk(n) is a linear combination of the ch(n) and

k- r

fk(n) nO j (Ln n),q(w;nn k max k,](3.81)"

also satisfies the difference equation. It is our intention to prove that

any F.S.S. of the form (3.81) must be identically zero.

Denote by d, the coefficient of n in q,(n) .since 0 0 ,

the result of writing out (3.77) for (3.81) and k = v k ik
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n ZI _ -si- -- Gins 0 + =s) 0 (3.82)
A-0 = 0=Ok- 0=01

and setting to zero the coefficient of the highe•.t power of n (n r-l/)

gives

G +r- - /0i =0 (3.83)S0=01

wh.ch is only •-ossible, since Go(O) has no double roots, if dol = 0

Hence, by (3.7), ql(n) E 0 . The sum (3.81) becomes a sum from £ = 2 to k.

Now write out (3.77) for v = k-l = k-i to show that q2(n) =- 0 . Eventually,

we arrive at ql(n) = (n) = ... = (n)- 0 , or fk(n) = 0 , so n)

is a linear combination cf the cph(n) , 1 < h -X+l , and hence k s .

Thus, if none of the roots of Go(0) are equal, there exist exactly k

algebraic logarithmic solutions of (3.1).

The same analysis can be conducted when some of the Oh's are allowed

to be equal, and the construction of the solutions in this case again is

analogous to the procedure used for differential equations, see Ince (1956,

Ch. XVI) or Forsyth (1902, Ch. II). Here we simply display the solutions,

since their forms will be of importance later.

Let 0h be as in (3.65)-(3.66), and, furthermore, let it be a root of

Go(O) of multiplicity 6h 1 1 . Define
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6h 61 + 62 + *." + 6h 60 = 0 (3.84)

The 6h F'.S.S. corresponding to Oh are

(,j -6 * _• * (n ) = n O h J' (-i" 
"()V J°

9 h,-6 Z1>- (in n) _sI a/W _ (Bh v=O V.s=O ee 1=9h

6* j 6 *-1 (3.85)

Note that

0( I * (3.86)
•J go(e)j 8  o =0hh

since the multiplicity of (0-8h) in ýo(9) is exactly 6*

The linear independence of the above solutions can be shown by the same

arguments used by Ince, p. 40C, and the proof that there are always exactl]y

k such F.S.S. requires the same type of reasoning as when the roots of

Go(G) are simple, but the details are considerably more messy.

Theorem 3.1 is now applied to show that the F.S.S. constructed above

represent asymptotically k linearly independent solutions of (3.1), and

the proof of Theorem 3.3 is complete.

Definition 3.6

A Birkhoff set {Yh(n)} for equation (3.1) is a canonical set if
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yh(n) = ChMh(n)[l + o(1)] , n---, ch / 0 (3.87)

where

Qh(n) Oh P
Mh(n) =e n (in n) , (3.88)

Ph a positive integer, and Mh =Mj for n 1,2,3,..., if and only if

h-j

By the construction (3.85) and Theorem 3.1, every equation (3.1) has a

canonical set, and so does the equation adjoint to (3.1). No two members of

a canonical set display the same asymptotic behaviour as n-->- , so not

every Birkhoff set is canonical, e.g., 11, nn+n I is a Birkhoff set for

Yn - 5ya+l + 3yn+2 - yn+3 = 0 (3.89)

but not a canonical set, as is {l,n,n2} or {l,n+l,n2+n}

Also, let S denote a subset of a canonical set, all the members of

which correspond to the same Q(n) and to a group of Oh's which differ by

integral multiples of i/w . Then S contains a smallest member zl(n)

and a largest member z2 (n) , i.e.,

ZI(n) y,(n)_

lim lim -- n - 0 , (3.90)K n-- yl(n) n-->• Z2kA
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where yl(n) is any member of S other than zI and y2 (n) is any member

of S other than z2

For the construction (3.85), z, and z2  correspond to F.S.S. 9pl 1 (n)

and px+,1 6X+l (n) , respectively, and

Zj•(n) ; clne'[1 + o(1)] (3.91)

Z2 (n) c c2 n(x+(n n) x+1 + o(1)] . (3.92)

(In the general case, a term eq n) will appear on the right-hand side

of (3.9l)-(3.92).)

Theorem 3.4

K Let {Yh(n)} be a Birkhoff set for (3.1),

Qh(P nyh(n) - e sh(p;n) , 1 5 h < a (3.93)

V •Then:

eQ(wz;n)s~,j
i) D(n) e... s(w;) , (3.94)

* 1where in Q(n)

•o ~~0 a -;1,e•l () C,• •2 1ml Ca O' •

(3.95)
"[= • (c2, c,)

ti •3 (w-2) [0l,'/2co,) - (c2 , /co,o)]

A5I
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where cj,a is as In (3.2), and s(w;n) is free from logarithms;

a
ii) Q(w;n) = 1 Qh(P'n) ; (3,96)

h=l

iii) *(n) = T(n)/D(n) -eh(n)s(n 1 . h : a (3.97)

are a set of Birkhoff solutions for the equation adjoint to (3.1).

Proof:

The proofs of i) and iii) are purely computational, i) following from

the difference equation for D(n) , (A.15). No logarithms appear in s(w;n)

since, by Theorem 3.2, the F.S.S. of a first order difference equation can

never contain logarithms.

To prove iii), note that from A-VI,

[Th(n+j-l)/D(n+j-l)]'X [yj(n+h-l)jJ 1  [ejh~l (3.98)

where

rij =h

ejh =(3.99)

0, h>j
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and so

" =(fl) D(n)" (3.100)

Since the yh(n) can be represented by the F.S. (3.97) which are

formally linearly independent, by (3.100), it follows that they are Birkhoff

solutions.

We close this chapter with a theorem on exponential sums.

Theorem 3.5

Let

ns --3(n) = - (k), n a o, (3.101)
k=O

where

eQ(n)v~)I
f(n) e v(n)[l + o(l)] , n-- , (3.102)

v(n) = n(-n n)r , (3.10)5)

r is a non-negative integer, and Q(n) is given by (3.5).

Let .* be the first non-zero element in the sequence (Re I

h 0,1,2,...,p and p* 0 if all the Re hare zero.
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Then:

i) if *< 0 ,we can write

A f Z (k) ,(3. I04)

k=O

and

S(n) A + 0 {e nl)nv(n)J , n-- ; (3.105)

ii) if I*> 0,

S(n) 0 {eQ(n)nv(n) n c (3.106)

iii) if o*=

0 {nv(n)} , Re e > -1;

S(n) = 0 {(ln n)r+} , Re 0 = 1 (3.107)

0(l) , Re 0 < -1

Proof:

We can write

f(n) = ceQ(n)v(n)[1 + K(n)] , n Ž 1 , (3.108)

where K(n)-->o as n--co
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For * < 0 , the series converges absolutely. Define

T(n) = f £(k) . (3.109)
k=n+l

We have

o-v

le- ~n'lT(n)j : Icl Z g(k)k'"l. + K(k) (3.110)
k=n+l

!5. C - g~k)k-', (3.111)
k=n+l •

where

k) v (k) IivRe Q(k)-Re Q(n+l) (3.112)

and we take v real and > I

Now

dx = g(x) Re Q'(x) + !( r + e + V)(.l1)

But g(x) / 0 for x > , and any zero of the quantity in brackets

above cannot depend on n . Since g(x)--->O as x--->-* , it follows that g

is monotone decreasing, x > xo , or, for n sufficiently large

V V
g(k) • (n+l)Iv(n+l) 1 5 Mn Iv(n)l , k a n+l , (3.114)
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and so

e T(n)n Iv(' n)I k - (3-115)
k=n+l

i0

!9 m iv(n)l nv x-d = nv~n) (3.116)i n (v-i)

which gives i).

The result ii) follows by a simple majorization, while for iii) it

suffices to consider

n n

>Ilv(k)l (1 n n)r k e 0 (3.117)
k=]. k=1

When Re 0 ,the series on the right is easily bounded. Otherwise

we use

n n R d
k~e 0 1 xRe Odx, Re 0 < 0 (3.118)

k=l 1
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IV.

By using the asymptotic theory of the last chapter, we can now apply the

general theory of computation by backward recursion, as developed in Chapter

II, to difference equations of the kind (3.1).

Throughout this chapter, we assume the difference equation in question

to be (3.1).

Theorem 4.1

There exists a canonical set {p(n)} for the equation adjoint to (3.1)

and an integer u 1 such that

( ch >/0 1 ,,, . h : uh ,

lim m/(m) = (4.1)
l---> 00 0 ,u+l : h !5

Furthermore, if u = I then for some n* , 0 < n* a o-l ,

lim An(m)/An*(m) = y(n) , n t n* (4.2)

exists, is not identically zero and satisfies (3.1), while, if u = 2 , then

m, m2  can be chosen so that (2.35) holds for some solution, yl(n) , of

(3.1). F�arthermore, yl(n) , the function to which the algorithm converges,

is independent of the particular set cp*(n)
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Proof:

Equation (4.1) is obvious, since, clearly, the absolute value of the

ratio of any two canonical solutions must either approach zero, a constant,

or infinity. Let fYh(n)j be that (unique) fundamental aet for the original

equation (3.1) which is obtained by lettir• Th(n)/D(n) - cp•(n) in (A.18),

then solving for Yh(n) for n k a-i , and finally usiig (3.1) to compute

yh(n) for all n O, : 0h :9 a We have

a

A (m) = * (m)yh(n)(.)

aad the statement for u = I follows immediately. Note that An*(m) cannot

be ze.o for more th.n o-I consecutive valuas of :*, for it satisfies (3.1)

and is not identically zero. Sirie An(m) is fully determined by the condi-

tions (2.2), it is independent of *(n) , and so is y1 (n)

Now

2 1 te iQ~ml )m is( + o(1))(ml) jRh(mj)l I = : iQ(m+ (4.4)

where Q , 6 are real, jal - cl , and io in Q is zero. Also we may

assume -n 9 p, n ,or else replace iQ by iQ 2rni ,r a suitably

chosen integer.
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One finds

'.(mi l sin ()-~i 1 + (in np-l Mi) 4  o(l) .(4.5)

2J

First, assurne Q(m) const., p, 0 ,so

J.+ -r
2 !c k .p-k

r~k

Let

[m.~ k-i k-1

2 i cini] m1 + Kmip + 0(l), 47

and []means the largest integer not greater than x .We have

p *I i + ~~) 1 i + 0 1 ~/)48

k-

_K P 1+ MP( + O(- J 48
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-Ilim A~(Ml) 2cl (4.9)

which assures us that (2.34) has a unique solution Tl, T2, and also that

(2.35) holds.

Next, we note that if Q is constant, we cannot have 0 0 , else. Tp

is proportional to . Thus, let

2= [mleu/1el]' mleT'e + 0(l) . (4.10)

Then (4.9) again holds.

Lastly, if pl , 0 in Q , let m2 = mlr, r a positive integer.

:rp

I(m:) cI .l,, -e. + o(1)1 4 (,.l)

Since r can be chosen so that e 7 'I , (4.9) again follows, and,

by Theorem 2.4, the proof is complete.

Theorem 4.2

Lot there exist a cancntcal set {yh(n)4 for (3.1) such that one of its

members, may yl(n) , ha the folloing property:
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urn y(n)nix/,, (n) 0 2 hs S , (4.12)

:'or all X. Then

lim An(m)/An*(m) - yL (n)/yl(nr) (4.13)

for all n x n* and some n 0 1 n* :l a-l,

If, in addition to (4.12) we are given the series

where

limr k Lkyl(k) 0 (4. I)

for all X * then the computation of yl(n) by baclward recursion based on

(3.1) and (4.14) converges.

Note that yl , if it exists, is unique, apart from a constant multiple, #

by A-VII. Since

"t
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we have, by (3.97)

Th'm)fTl(m) QYJ.(m)fyh(m)) O(m),2 h a ,(.)

for some real 0h , and the firrt part of (2.12) follows.

Now., ftuom (4.15), we deduce

-Re . ,,(k) k> 0 a, 2 -Re 1.(

s.) 14 m eR (qh(k)-qlk')) kRe hPO k' (1)

and we may apply ii) of Theorem 3.5t since (4.12) implies that Poll < ;o~ h

The result is that we can determine constants Kh so that,for m m>

S~m~j I~hmm'1h/yl(m) .(4.20)

Thus, by (4.1-7)

lim RhSh 0 2 h a (4.21)

and the proof Is coMpete.
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The condition (4.12) is rather stringent, and fo' a 2 or 3 it can be-

weakened considerably. We have, in fact,

Theorem 4.3

let - 2 or 3, and let {yl(n),y2 (n) I be a fundamental set for (3.1)

if a =2 and let {yl(u),y2 (n).;. 3 (n)} be a canonical set for (3.1) 11f

a=3.

H Let

lrm n L(a)(In n) 2 yl(n)/yh(n) 0 , 2 Sh !C , (4.22)

where L(q) is a positive number depending only on , L(2) = 0, L(3) - I.

Then for some n* , 0 n* cr-I,

lum An(m)/An*(m) yl(n)/y 1 (n*) n a (4.23)

Let, in addition to the above, (4.14) hold, with

for som n k) , ia such that

OQ(k)kL(a)+arl(•ko•¢ o. (,.25)
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Then the calculation of yl(n) by backward recursion based on (.1) and

(4.14) converses.

Proof:

We have, from Theorem 3.5,

Ah + o(l) , '-Lkyh(k) convergent,
S h(m) / m1C (4.26)

{h0 (eQ( 1)m+llIn m yh(m)) , otherwise

It remains only to show that

Rh(m) 0 (mL(O)jn in'2yl(m)/yh(m)), 2 ! h :s . (4.27)

Then (2.12), and hence the Theorem, vill follow from (4.22) and (4.25).

For a 2 , (4.27) is obvious, since

Th(,) u (-)h- .hY mU]), h I, . (4.28)

ILt, then, a - 3 . It suffices to consider only It2 . Now {Yh(n)}

is canonical, so, by the construction of Theorem 3.3, ve can vrite

58 e _)L 1 + (4.29

1Pb(n) Q h(n) +0,l-lnna + ln(ln n) + n ch .(~.6.3)

Se
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Since

[in(n+l)] [in n] +

we hAve

yh(n4l1)/yh(n) e nPh(n)[ 1 + 0 (4.n)K

where n is the forward difference operator, Milne-Thomson (1960). Thus

%(n-1) - - yl(n)A(n)/[y2(n)B(n)J , 14.55)

A(n) -1 ( + (4,.4)

Ank3./ 1 (P hen) P(4.n)h)ltatIo ~Rad i •n-•

n~n(n nP

(6 2n )- 3  (a 2-9 3) (P2J.J

-~~~ - +~ (%r)(- + 0- _ _ _

(n(ln n)

It sk ~ ,0 then (4.22) shown that pol < ( 2a nds (&-&

Bence assume PC, p* If • € l, oZ sg3 then plo < p'o3 and the lesAing

torn of both A(n),)(n) to unity, so again, by (4.2),1 R(m)--O-. Dne

asaum 1o.1- . Then A(n) is bounded, and B(n) Is "ymptotlcallty

smallest In the usa$e vhere - Q3 02 0 83 " Then it approaches zero e



1/(n in n) , since we cannot have, furthermore, p2  p3 . Thus (4.27)

followso and Rh 0 Rhh I h 2,3, approach zero. This proves the theorem.

We conjecture that Theorem 4.3 is true for all c , i.e., that there

exists an L(o) for (4.22) which will ins'.mre (4.23) and (2.7).

For a - 2 , (4.23) follows from a result Gautschi (1961) proved for a

second order difference equation with arbitrary coefficientsj and also for

this equation, Olver (1964) has determined other conditions on Yly2 which

will guarantee the convergenco of Miller's algorithm, based on (4.14). to

y(-) (n

We now present several examples of applications of the previous mata-
i

rial.

Let

y(n) e.t- P(t)tndt , n = 01,2,. (4.36)

0

) (t) - .. (4.37)

A ntoivle integration by parts shows that y(n) satisfies the diffterence

equation

i.6-
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y(n) 0 ac1)y~)- n1)lv• %y(n+v) - 0 , - i. . (4,30)

From de Bruijn (l96i , p. 119) ve have

0+ 5 + ..1.+2nq(d,), n--

02 (4.39)

2 \2 1"-2/ au-2]

When a = 2 , y(n) is eosentially the parabolic cylinder function

U(n4ja,/ 4) , the theory and computation of which are discussed by W,11er

(1.964).

Naw, by Birkhoff (1930, section 2) , we know there exists a fundamental

set for (4.38) J. ni where yh has as cin asyMtotic expansion the P.B.

cn the right of (4.Z)vith n replaced 4y neI r%(h-) , l h : If

given a FS,S., so there are no mre. Furthermore, by Definition 3.6,

I yh(n)} IIs canonical. We can identify y(n) with y~.

We have

Ivl(n)/y.,~(n)I exp{21%tIJ(nfo) r()[r r 0(n-1/0)]} (4.40)
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fh(y) = sin(Y-hlT/c) sin(hy/a) , y - arg a,, . (4.41)

For IYI < Y , fh has zeros only at the points hrr/q and hn/a -T., so

fh is of one sign for y between these points. Since

fh(O) = - sin2 (hji/.) < 0 , (4.42)

we have

fh(y) < 0, hir/a -r< y < hir/a (4.43)

or

fh(Y) < 0, -. l/a < y < r/a, 1 ! h <-- . (4.44)

and so, for these values of erg a..1 I condition (4.12) of Theorem 4.2 is

fulfilled.

Let

eP(t) -r(l+/) k (4.45)
k=O

Since the left-hand side is an entire runction of order a-l , we %ave,

by Boas (1954, p. 10) ,

IL1 < C k-k!a,k > , (4.46)
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so

Also

k=O k=O

Thus, by Theorem 4.2, the computation of the integral (i!.3) by backward

recursion based on (4.38) and (4.48) converges when larg ao.iI < irk

SOar next examnle is a class of hypergeometric functions. (For notation,

see Erdelyi et al., 1953; v. I.) Let

SQ+J2

yIn)= (Y)2n Q Q+2FQ+lkn+bl, . "n+bQ,2n+y+1I (4.9)

iT (b)n
J=]

where Q,n are non-negative integers, + , , ai, bj are complex con-

stants, (%+2 -= +i) , none of which are negative integers or zero, and X

is a complex variable, finite. / 0 , jarg('-x) < I,

[G



Then (Wimp (3.966)) y(n) satisfies the difference equation

Q+2
Z[M~,v +X ] y(n+v)o 0 (4.50)

v=0

where Mo l ho N.+ 0 and

Q Q+2

(2n~y~q+31T (n+yva,)

r(Q+3-v)(2n+y+v)v~ T (1

)( Q+4 FQ+3( 2n+Y+2v+l3.~ -a.,. % +2 I)(4.51)
for 1:svsq+2 . nd.

Q
-)(2n~y)q. 3 17(n+y+v+l-b 3 )

Nv-

f(Q+2-v)(2n+Y+V+1),, TT (n+aj)

X< Q'F2Q+Lý2n.+Y+2v+l,n+y+v+l-bl3 . . ,n4 y~~-Q(-2

fo 1!cv <Q+3.

; I ~~Note that (.3)(.)are termin~at~ing hyperaeometric functions., and

rrany Value Of v ,they are ratic.:,a'. ýýnt'c. of na Thus (4.50) is of

tkjM form(3-1) with w1



ii

A result of Wimp and Luke (1962., the Corollary on p. 7, with m = 0 and

then w 0 )shows that

k0O

Since

(Q-2),+ o(n-) , n-•= , (4.54)

% r) + o(n"11 n-->c (4.55)

there are -wo linearly independent solutions of (4.50) with the behaviour

n n

*Y 1(n),, (-)f [C1(x,)] s1 (n) , n--> (4.56)

y2(n) [C - 2(X)] s,(n) ,n-->, (4.57)

see Wimp ( v9G6), vhere

-X]i/k [I. + (4.58)

and we define

S-x II-, , 0 < ar.(X-1). < 2T. (4.59)

G5 4.,l
Ii
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I~I,

It can be verified that • maps the X plane cut along the real axis

from I to - , (i.e., larg(l-%)l < ? ) onto the interior of the unit circle

< 1 , while C2 maps the cut plane onto JXI > 1 . Thus for the values

of arg X considered,

I0%.,, < C20 )Ic~ >,• (4ý0)

and so (4.12) bolds not only for h = 2 , but also when yh is any purely

algebraic-logarithmic solution of (4.50). We now proceed to show that all

the remaining members of any canonical set {yh(n)} to which yl,y2 belong

are purely algebraic-logarithmic.

Consider

Q+2

vm

Q÷+.
ONm) W (-,v)AN 0 ~m s Q'i2 (4.62)

v--m

I =M

Using (4.51) in (4.61), interchanging the order of summation and evaluat-

ing a 21 of unit argument, we have

K

Q ~(a 3 -y-m-X)
CLW (-) ui!(2n+y~. (Q+2-m) _____(4.63)

Q+ AX (2x+y+m)m. 1  x-a
fL~) Q~~(n+a3 )r(Q+3-M) 11(.3
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where Axq+2-m) is the forward difference operator, see Milne-Thomnon

(1960). But the quantity in brackets above may be decomposed into a poly-

nomial of degree Q+l-m in x , the indicated difference of which is zerc,

and a sum of terms

1 d/(2x+Y+÷m+) . (4.64)

The dj may be calculated by multiplying the bracketed quantity in (4.63) by

2x+y+m+J and letting x--,-(y+m+j)/2 . Then substituting (4.64) in (4.63)

gives

M r (n+ - T(y-r2)(44(m)~2"' TT)4(2  4m (-i)r J=a
_________ ) (4.65)•S~) =Q+3 Q' (+2 j r r.-!' r (+ I-r +r +Q+3)(.)

2 TIT (n+aj) 2~+ .r Q 3
J=1.

and an order estimate for this sum is easily obtained by using

=~~)rnp n'- + 0(n 1 ) (4.66)

The result is

Q~4 ~(. ()Q,() (y-2&j) + O ] ( .67I) ,
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:;±m.L lrl), one finds that

J4(-.Qinn.()y (y+2 -2b3) ~o~1] 0 !5m

(4.68)"0; (1), ,-q+l

Next, we have

k

! (4.69)

m=O

the B's being Bernoulli numbers, see N~r1und (1954, p. 150).

We may use tie above results to finally arrive at the estimate for Pk

in Theorem 3.3,

jn}k }k (4.70)S~o(n-•l Q+l :9 k 5 Q-F•

Thus, in Theorem 3.3 we have p = . , ¶ -q , kj = J k = Q , and

Goe)-4x> - w wr.-- U ] (Y+r+2"2bs)
r=O s=1

(4.71)

and oo
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Oh- 2 bh- y - 2 , L= 1,2,...,j . (4.72)

According to that theorem, there are exactly Q algebraic-logarithmic

colutions of (4.50), and, if none of the eh differ by integers, these are

of the form

y,2(n) - n1h[1 + 0(n')], 1 f. h • • (4.73)

Otherwise, logarithmic terms may appear.

We have thus determined a canonical set for (4.50), iyh(n)l A result

of Luke (1968), which is a generalization of Watson's result fora 2F? (see

Erdelyi et al (1953); v. I, p. 77, formula (16)), enables us to identify

y(n) with a constant multiple of yl(n) . Lastly, by examining M as

given by (4.51), we see that If

a, • -y-Q-2,-y-Q-3,..., 1 s j s Q2 , (4.74)

then N4.2 $0 for n a 0. If this condition is satisfied, as well as the

conditions inmediately following (4,49), then Theorem 4.2 may be invoked:

t*o hyrgeometric functions (4.49) may be cogmuxttd by backward recursion

from (4.50) and (4.53).

In particular, we have demonstrated a way of ccqNptlng Gauss' function

wherever it is analytic, i.e., for larg(l-)I < it , as is seen by letting

0 0, a•1  , * +1 boyi+ - c in (4.49)-(4.52):
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i•n n

y(n) n)'n(a)n(b)n F (4.75)(c-.)2n] 2F nnc V (

(2r,+c-l)[2n2+2n(c+l)+c(a+b+l)-2ab]
Ho I N - (2n+c)(n+a)(n+b) i

(4.76)

(n+c+l-a)(n+c+,-b)(2n+c-.l)(2n+c) (2n+c-1)(2nc)
N2 = (ni-a)(n+b)(2n+c+2)(2n+c+3) , N1 = (n+a)(n+b)

To further illustrate the power of the methcd, we compute the function at a

point on the circle of convergence of its Taylor series

= • = (1 +7i)/7)

with a = 2/3 , b 1. , c = 4/3 . It is known, e.g., Erddlyi et al (1.953,

v. I, p. 10o5 (55))

(o)= e-iI262r(- a 0.8833. 9376+ 0.50998 46791 .(46.78)( e/3 9r(2/3) 2

Computation of y(0) by backward recurrence using (4.50), (4.53) yields the

following table:
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_= y(0)-ro(m)

5 0.88239 8541 + 0.50945 3036i (9.2 + 5.3i) x 10-4

9 0.88331 4192 + 0.50998 1687i (5.2 + 3.01) x 10O

13 0.88331 9347 + 0.50998 4663i (5.0 + 1.8i) x 10-8

and ro(15) agrees with y(O) to all the places (4.78).

The series for y(O) converges only conditionally, Knopp (1947,p. 401),

but this is irrelevant, because the Miller algorithm will work whether the

Taylor series converges or not, as long as j arg(l-X) I< T , and, as is easily

seen frcm the formulation (2.10), the convergence is exponential,

K! I y(n) = rn(m)[l + O(mccl()m)], m--• . (4.79)

In this case

1 (2 -. AJ3) 0c1A) 268.Žs ... (4.80)

As our final example, we take the confluent hypergeometric function
•6(b)n(6)n(.)

yl(t- (n+,6+-b;A) •

(Oar notation and subsequent analysis draw heavily on the material contained

Sin Erde'lyi at a]. (i95o, v. 1) Ch. 6).)

Syl(n) satisfies the difference equation
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y~)-(n+1)[f(2n+6+b+1)+X] (n+1)(n+2) n+)*0, (.2
(n+6)(n+b) ~ +L (n+6)(n+b)

and

y (6.b)/2-S/40 2niXir 0n)](.3
YLrIJ V(X)n 1+ O+ c8

jarg Xl !g r V(X) 4n X (6b)/2-keX/2f r(6)r(b) ,(4.84)

Lm~ y,(k), arg~~ 1 (4.85)
k-0

Another fuz~ction satisfying (4.82) is

(a( ) .S(n+6,6+1-b;X) (486

A,-6 r(b)r(6+l-b)v(x)n(6*b)/2 -5/4 02n*Xi 1 Q()

a.rg xl iT (4.87)

It is thus seen from Theorem 4.2 that the computation of yl by backward

recursion based orA (4.e"), (4.85) converges for jarg X1I < *To illustrate

this,, let 6 b 80s

y1(3)X k -,*O/2V0( X/2 )/W(.8
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[Xi LA~./2 (/2)] O3f ./2 [-K(Af2)+KO(X/2)(L+l/X)] .(4.90)

SdXL dJ 2 4 -j

For A- 4 ,standard tables give

yl(o) 0.94960 802 .. , y1) - 0.0417] 2616 ... . (4.91)

Taking a = 10 in (2.2) to (2.6) yields

to(iO) = o.4s96i.3w *... , ru(•o) - 0.0o171.2759 ... (4.92)

with approximate absolute errors of 3.3 x 10'6 and 1.4 x 107 , respee-

tively. It is interesting that the difference equation (4.82) serves to

compute K. while the usual recursion relation does not.

If arg X ,T thenve can define

aceiMtIi4 (4.93)

a 3c- 2iaiXI1 1 + 0(.4)]*(.)

AMTheorems4. 1and 2.4 apply.,with p k 2 j 2  0, &,ad
73I
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Thus both the functions (4.81) and (4.86) can be computed in this case,

provided that suitable normalizati&,n relationsbips (or initial values) are

known, since it is clear the series (4.85) will, in general, no longer suffice.

An even more efficLent algorithm for the calculation of the T function

can be based on the third order difference equation satisfied by the functions

z(n) = r(2n+'a-')(n+a l-n,n+a (4.)
r(a)r(6)r(n+b) 4X3,.I a,6,b )

( )n (2n6a) )r(n+a'l)Xn+a dn
dXn

(see Wim (1966, 1967) and Iuke and Wimp (1963)). This is because (4.96)

behaves as

d 1X/3 2/3 -z (n) c nei + ,~ n-to-,c (4.98)

for some c , d (independent of n ), Xa•r X < 3r/2 . (A canonical set for

the equation is readily obtained .by replacing n above by ne 2hTTI

h 1 1,j2.)

In fact, the hypergeometric functions discussed in the above three ref-

erences, which are of the form

S~P41,1 (I l-fln'n+Y+l"bQ"\

! P+,l pl, , n 0o1,2,... , (4.99)
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can all be computed by Miller's algorithm, using the recursion relations and

normalization series given by Wimp (1966), provided iarg X1 < Tr for

p > Q+1., and jarg(l+A"11) < I for P = Q+1 , in which case (4.99) Is

related to (4.49). For P > Q+÷ ; the difference equation for (4.99) has Q

algebraic-logarithmic solutions with the same values of Sh as given by

(4.72), plus an additional P+I-Q anormal F.S.-E

Yh(n)- Cnh exp )q)(n 2Ae,2hTi h = O,lI,...,P-Q ,(4.00)

while if P < Q , then p = w = 1 in all the F.S.S. of the difference equa-

tion. Thus the recursion relation for (4.99) has canonical sets whose com-

ponents exhibit widely varying behaviour. depending on the relation between

P and Q , and the equation may be expected to furnish a riunber of addi- V

tional interesting applications of the theory developed in this work.

4l

75

loo



APPENDIX

Here we set forth the notation used in the body of the thesis, and list

some frequently invoked results from the theory of linear difference equa-

tions.

For determinants and matrices, we use the notation

01l 0!12 r'

0'2 1 ' 2 2 * C

I ~jhj 1 -(A~i)

T2] T~2 '

T= 
(A.2)

ii. o 12 C1T j

th thj,h always denoting the element in the j row and h column of the de-

terminant or matrix.

Let Tn #n be (complex-valued) functions of n O0,l.2.,.... We write

Tn a Cl* ) (A.3)

if tn o for n > no and if a positive A exists for wt.,.h
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an l n/ < A, 11> no (A.4)

and

n, n- , (A.:)

if, given c > 0 , there exists an N(C) - no such that

n for all n > N • (A.6)

Let p be an integer a 1

C o+C.n1L/P+cfn-2/p+ 1 Co 0 n--•- (A,7)

means that

for each ; 0,1,2,,.... n-@ ,(A)

i

ing to some sector S in the complex plane. Then

etc., are interpreted similarly. See Erdelyl (1956) or de Bruijn (1961) for

details.

77

------ V



Suppose we have a set of (complex-valued) functions

1 s h s a . defined for n = 001,2,... The functions are called linearly

dependent if and only if a relation

cg 1y(n) + c2 y2 (n) + ... + coy,(n) = 0 , n = 0,1,... , (A.10)

holds for some constants (independent of n ) c which are not all zero.

Otherwise, the functions are linearly independent.

Good sources for the following material are Gantschi (ca 1962), Milne-

Thomson (1960) and N9rlund (1954).

A-I. The functions {fh(n)} , 1 9 h a a are linearly dependent if and only

if

D(n) = Icph(n+J-l) O, n = 0,1, .... (A.11)

A-II. The functions in any subset of linearly independent functions are

linearly independent.

A-III. For any integer k z 0 , the difference equation of order a(Z 1)

a Z C(n)y(n+v) 0 , n = 0,1,2,..., Co O ., I C(n) 0 , (A.12)

possesses a unique solution satisfying the conditions
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I.I

y(k+v) c , v = o10, 2 ;...,o- . (A.3) 1

A-IV. Equation (A.12) possesses a linearly independent set of solutions

{ yh(n)j, 1 S h 9 a, called a fundamental set, and any solution of (A.12),

such as (A.13), can be expressed as a linear combination of these functions.

A-V. Let

D(n) = hnj)l .(A.14)

Then

D(n+l) = (-)CD(n)/Ca(n) , n = 0,1,2,.... (A.15)

A-V.L. The equation

• C,..(n+v)y*(n+v) 0 , n 0,1,2,... , (A.16)
v0O

is called the equation adjoint to (A.12), and the functions Th(n)/D(n)

1 g h g a are linearly independent and satisfy (A.16) where

I ! l•,.(.,÷l), ....- yh_,(nl÷.)vh÷].(n~l).,'-- .,.,on~l)
i• Th~n). (.h1 A.r,,1

yl(n+a,-l),., yh. (n+a-l),yh+](n+a-.),..,Ya(n+a-l)
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Thus

I., r 0•

Th(n)yh(n+r)/D(n) 0., 1 S r s a- , (A. 18)

A-VIZ. Let the functions {Yh(n)} , 1 : h f a, be such that

lir yh(n)/yh+,(n) = 0 1 r. h !9 a-1 (A.19)

Then the functions are ,linearly independent.
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